矩生成函数

  1. 定义
  2. 性质
  3. 高斯分布相关
  4. 参考

定义

参考维基百科 Moment Generating Functions

性质

  1. LetX bearandomvariableswhosem.g.f.ψ(t)isfiniteforallvaluesoft insomeopen
    interval around the point t = 0. Then, for each integer n > 0, the nth moment of X,
    E(Xn), is finite and equals the nth derivative ψ(n)(t) at t = 0. That is, E(Xn) = ψ(n)(0)
    for n = 1, 2, . . . .

    或者通过维基百科上的式子求导更容易理解

  2. Let X be a random variable for which the m.g.f. is ψ 1 ; letY = aX + b, where a and b
    are given constants; and let ψ 2 denote the m.g.f. of Y. Then for every value of t such
    that ψ 1 (at) is finite,

  3. Suppose that X1 , . . . , Xn are n independent random variables; and for i = 1, . . . , n,
    letψi denote the m.g.f.of X .LetY =X1 + . . . +Xn,and let the m.g.f.of Y be denoted
    by ψ. Then for every value of t such that ψi(t) is finite for i = 1, . . . , n,

  4. If the m.g.f.’s of two random variables X1 and X2 are finite and identical for all values
    of t in an open interval around the point t = 0, then the probability distributions of
    X1 and X2 must be identical.
    两个随机变量t=0领域内矩生成函数一样,那么他们的概率分布也是一样的。

高斯分布相关

高斯分布的矩生成函数可以结合上面定理4证明高斯分布很多其他性质

参考

  1. 书籍: Probability and Statistics 第四版 by Morris H. DeGroot

转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以邮件至 yangbenbo@whu.edu.cn

文章标题:矩生成函数

本文作者:杨本泊

发布时间:2019-09-01, 15:01:28

最后更新:2023-07-09, 07:10:12

原始链接:http://yangbenbo.github.io/2019/09/01/矩生成函数/

版权声明: "署名-非商用-相同方式共享 4.0" 转载请保留原文链接及作者。

目录